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and maximize computational efficiency. Formulas 5) and 6) of
Table I represent one-dimensional Green’s functions and their
Poisson summation formulas. Since these one-dimensional
Green’s functions do not have source singularities, they can be
readily summed by direct application of the Poisson summation
formula; that is, the acceleration technique defined by (1) is not
required. The Poisson summation formulas for these one-dimen-
sional Green’s functions are normally only needed in certain
cases involving multiple summations.

Whereas the formulas in Table I are directly applicable to
one-dimensional arrays of point and line sources, they can be
easily extended, by successive application, to arrays of higher
dimensions involving multiple summations. This extension is a
result of the property that the Fourier transform of any of these
Green’s functions of any one dimension can be interpreted as the
Green’s function at the next lower dimension. For instance, the
result of applying the Poisson summation formula one time to a
two-dimensional array of point sources can be interpreted as a
two-dimensional Green’s function. The Poisson summation for-
mula can then be applied again to recover the final Poisson
summation formula for a two-dimensional array. This procedure
is demonstrated by the following example.

To obtain a summation formula for a two-dimensional array of
point current sources, the Poisson summation formula is first
applied to the y coordinate of the three-dimensional Green’s
function yielding

f(p.a)= i i [x2+(y—pa)*+(z—qp)’]

p=—0wg=—m

cexp( - k[ +(y = pa)’ +(z - av)’]”")

0 o 1 2up 2 , 1/2
- =2_me0([(7) ~k

.[x2+(z—qb)2]1/2)exp(:@). 2

An expression equivalent to a two-dimensional Green’s function
can be recovered by manipulation of the above expression giving

= i f_: ai H(Z)([k (2$)2]1/2

[ +(z—qb)2]1/2) exp(————_ ji'rrpy).

Applying the Poisson summation formula again, but this time to
the z coordinate of (3), gives the following Poisson summation
formula for the Green’s function f( p, ¢):

BBl ey

p=—owg=—ow

ol (25 -2 ]
.exp( - jiwpy)exp( - jiqu)' (4)

The asymptotic form of the Green’s function g(p,q) and its
Poisson summation formula G(27n,27q), required by the accel-
eration formula (1), are obtained from the Green’s function and
(4) by substituting (x2 + ¢?) for x2.

(3)
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One final comment needs to be made. At first inspection, the
singularity at n=0 in the Poisson summation formulas of the
two- and three-dimensional Green’s functions of the Laplace
equation, ie., formulas 3) and 4) in Table I, seem to cause
trouble. In practice, the series Green’s function can always be
written as the difference of two functions, both of which having
the functional form of f(n) in either formula 3) or 4) of Table 1.
With the Green’s function written in this form, the n = 0 term of
the Poisson summation formula equals zero, removing the singu-
larity and obviating the problem.
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The application of the series acceleration technique defined by
(1) permits efficient computation of wide classes of problems
which involve periodic sources. Many of these problems require
integral transforms in the form of Poisson summation formulas
which are not readily available. This paper presents a complete,
«convenient catalog of these Poisson summation formulas for
Green’s functions of the Helmholtz and Laplace equations which
represent periodic sources in rectangular coordinates and homo-
geneous media.

CONCLUSION
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Constant-Frequency Synthesis of Lossy Microwave
Two-Ports

LODEWIIK R. G. VERSFELD

Abstract — At a fixed frequency, every linear time-invariant two-port can
be described by its scattering matrix, whose elements represent eight real
parameters. In this paper, it is proved that every lossy (linear, time-
invariant) two-port can be canonically synthesized by eight “elementary”
two-ports, which are characterized by one parameter only. Moreover, these
elementary two-ports are passive and realizable in the microwave region.
The synthesis is performed in the form of a cascade structure (with one
“side arm” for the nonreciprocal case). Explicit formulas for the parame-
ters of the elementary two-ports are derived.

1. INTRODUCTION

This paper gives a “satisfactory” synthesis of linear, time-
invariant, lossy microwave two-ports at a fixed frequency. It
herewith solves part of the general problem of constant-frequency
synthesis of microwave networks [1]. By “satisfactory” we mean a
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TABLE I
ELEMENTARY BUILDING BLOCKS
NAME SYMBOL SCATTERING MATRIX
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synthesis using a minimum number of elementary two-ports
belonging to the same class as the required two-port (in this case,
the linear, time-invariant, passive class). We call a two-port
elementary if it has one adjustable parameter and a simple
description in terms of the scattering formalism on a power basis
[2].

Here we neced three types of elementary two-ports, given in
Table 1. They all can be considered as idealizations of realizable
microwave two-ports. Furthermore, we need the three-port circu-
lator (see Table I) for the realization of nonreciprocal two-ports.

We shall show how a lossy two-port, characterized by eight real
parameters, can be synthesized with eight elementary two-ports, a,
circulator, and a short circuit.

With “lossy” we mean that the two-port dissipates power for
all (sinusoidal) forms of excitation. Therefore, in the passivity
conditions [3], only the inequality signs appear!

~18ul* = 1Suf*> 0
~ 18> = 1S21* >0
(1 - |S11|2-|S21|2)(1—— 1Sy * = |Su|2) = 1811812 + 851 80> > 0

6y
We also introduce the concept of a passive one-port, char-
acterized by its complex reflection coefficient p (see Table I), not
for the synthesis itself, but only in order to formulate some
theorems.

II. SOME AUXILIARY THEOREMS

Theorem 1

Every passive reflection coefficient p, = |pyle/®® can be real-
ized by the circuit of Fig. 1, taking B = — 3¢, and r = |p;).

This can be seen by noticing that p, is the coefficient S;; of
the cascade of B and N, which can be calculated easily.

Theorem 2

If and only if a lossless two-port is loaded on port 2 with S,
(i-e., the complex conjugate of its coefficient S,,), the reflection
coefficient seen on port 1 equals zero.

1A bar above a symbol is used to denote the complex conjugate.
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Synthesis of a passive reflection coefficient.
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Fig. 2. Lossless two-port, loaded with S,,.
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Fig. 3.

Fig. 1.
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Definition of conjugate image reflection coefficients.

This can be seen by computing p in the situation of Fig. 2 and
using the properties of the S-matrix of a lossless two-port [4].
Likewise, loading port 1 with S, yields p = 0 on port 2.

Theorem 3

For every lossy two-port T, passive reflection coefficients p;
and p, can be found such that the situations of Fig. 3 hold.

This is the concept of conjugate image impedances [5}-[7]
translated into the scattering formalism. The straightforward
calculation of p; and p2 yields

n=3E 55D +/DF —4IEP) (22)
b= 55| 2 + D} —4IET) (2b)

where (with det S = $,,.5, — S1,51)

Dy =1+|8y[* = |8y |* — |det S|?
E =5, -5, detsS
Dy =1+ |Sp|* = |Sy > — |det S|

E,=S,,— 8 detS.

These formulas can be obtained also [8], [9] by changing the
normalization impedances of a given S-matrix such that in the
new S-matrix S;; =S,, =0 holds, i.e., both ports are simulta-
neously conjugate matched. It can be proved by rather com-
plicated algebraic manipulations that (2a) and (2b) have the
following properties:

a) Df—4|E > =Di ~4|E,*.

b) The modulus of the product of the two solutions for p,
equals unity. The same holds for p,.

¢) D2 -—A4|E,J* is positive for lossy two-ports.

Properties b) and c) together imply the existence of one passive
(and one active) solution for p,. Because of property a), the same
holds for p,. Moreover, it can be proved that D, and D, are
positive for lossy two-ports. This implies that in (2a) and (2b), the
passive solutions are obtained by taking the minus signs.

Theorem 4

In the cascade of Fig. 4, with T an arbitrary lossy two-port, the
two-ports Ny, B,, B,, N, can be chosen such that for the resulting
two-port (i.e., between ports 1 and 4) S;; = S,, =0.

Proof: Let p, and p, denote the reflection coefficients
belonging to T, as meant in Theorem 3.

According to Theorem 1, B, and N, can be chosen such that

loading port 4 with p =0, the reflection coefficient on port 3,
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Fig. 4. Transformation of a two-port into one having zero mput reflection
coefficients.

Fig. 5. Transformation of a two-port 1nto an equivalent one.

Fig. 6. Synthesis of a lossy two-port using eight elementary two-ports.

seen {o the right, equals p,. Likewise, B, and N, are taken such
that loading port 1 with p = 0 yields p = p, on port 2 (seen to the
left).

Now, loading port 4 with p = 0 (and looking to the right all the
time), we see on port 3: p = p,; on port 2: p =p; (Theorem 3!);
on port 1: p = 0 (Theorem 2!). On the other hand, we see on port
1, by definition, the reflection coefficient §;; of the resulting
two-port. So, S;; = 0. Using the same reasoning from left to right
yields the result S, = 0.
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In the cascade connection of Fig, 5, T is the two-port to be
synthesized. Furthermore, let the following relations exist:

i=1,2.

THE SYNTHESIS OF 1.0ssY TwO-PORTS

B=—RB r=-r,

7 ? (3)
B, B!,r,r in this expression are the scatiering parameters
(according to Table I) of two-ports B,, B/, N,, N/, respectively.

From (3), it is clear that there is a through-connection between
ports 1 and 3 as well as between ports 4 and 6. Therefore, the
resulting two-port is identical to two-port T. The synthesis will
relate to this resulting two-port. Using Theorem 4, we choose
N{, B{, B5, Ny such that S}, = 83, =0 for two-port 7" in Fig. 5.
So

0 S,

S,_—_
"lsy o

This two-port T’ can be realized by a cascade of an attenuator, a
phaseshifter, and a circulator, the latter being loaded on its third
port with the short-circuited cascade of an attenuator and a phase
shifter. Applying this to the cascade of Fig. 5 yields the final
result given in Fig. 6.

Here we see how a lossy two-port, given by eight real parame-
ters, is synthesized with a circuit of eight elementary two-ports,
having together eight real parameters as well.

The last step is to express the latter parameters into the former
ones. Combining (3) with Theorems 1 and 4 yields

B, =%argp,

r =104 (4)
B, =}argp,

ry=—|pl
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p, and p, being given by (2a) and (2b), respectively.

Referring to Fig, 5, matrix S, can be calculated from the
cascade of Ny, B;,T, B} ’N;. In addition, using (3) and (4), we
find

ej%(argm +argp,)

1-py8y

1—|pyf?
i- |402|2 .
Since S}, /S,; does not change if reciprocal two-ports are put in
cascade with a given two-port, we get
Sn

S$h= S_lzsl'z-

Sl =51 (%)

(6)

The parameters of the remaining two-ports of Fig. 6 can be
expressed easily in S{, and §j; as follows.

a) If 1S5 < IS8,

e 0 =|8],] By = —arg S,
Sh

o | (<D B =—i(rtargS; ~arg S12)
12

(7

the circulator has to be used with port 1 on the left-hand
side and port 2 on the right-hand side (see Table I).

b) If 4] > 8,
Formulas (7) with S/, and §j, interchanged; the circulator
now has to be used with ports 1 and 2 interchanged.

Notice that in the reciprocal case, due to the values e”* =1 and
B = — 17, the circulator turns into a through-connection.

1V. CoNCLUSION

At a fixed frequency, every linear, time-invariant lossy two-port
can be canonically synthesized by the structure of Fig. 6.

Whether or not this realization is unique is an open question.
Other possible structures are

— the “cascade with side arm,” not having the same number
and order of attenuators, phase shifters, and ideal trans-
formers as the structure of Fig. 6.

— combinations of cascade, series, and parallel structures.
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