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and maximize computational efficiency. Formulas 5) and 6) of

Table I represent one-dimensional Green’s functions and their

Poisson summation formulas. Since these one-dimensional

Green’s functions do not have source singularities, they can be

readily summed by direct application of the Poisson summation

formula; that is, the acceleration technique defined by (1) is not

required. The Poisson summation formulas for these one-dimen-

sional Green’s functions are normally only needed in certain

cases involving multiple summations.

Whereas the formulas in Table I are directly applicable to

one-dimensional arrays of point and line sources, they can be

easily extended, by successive application, to arrays of higher

dimensions involving multiple summations. This extension is a

result of the property that the Fourier transform of any of these

Green’s functions of any one dimension can be interpreted as the

Green’s function at the next lower dimension. For instance, the

result of applying the Poisson summation formula one time to a

two-dimensional array of point sources can be interpreted as a

two-dimensional Green’s function. The Poisson summation for-

mula can then be applied again to recover the final Poisson

summation formula for a two-dimensional array. This procedure

is demonstrated by the following example.

To obtain a summation formula for a two-dimensional array of

point current sources, the Poisson summation formula is first

applied to the y coordinate of the three-dimensional Green’s

function yielding

~(~,q)= i i? [~2+(Y-PU)2+(Z -m2]-1’2
*=_mq. .w

exp(-jk[x’+ (y-pa) ’+(z-qfr)’]’”)

.[x’+(z-qb)’y’ )exp(-~~mpy). (2)

An expression equivalent to a two-dimensional Green’s function

can be recovered by manipulation of the above expression giving

.[xz+(z-qfr)’y’ )exp(-J~’’py). (3)

Applying the Poisson summation formula again, but this time to

the z coordinate of (3), gives the following Poisson summation

formula for the Green’s function ~( p, q):

=p:mq:m~[(y)’+(~)’-+”

“exp(-’x’[(~)’+(+’)z-k’l’”)

“exp(‘~:mpy)exc:mqz)(4)

The asymptotic form of the Green’s function g( p, q) and its

Poisson summation formula G(2nn, 2 nq), required by the accel-

eration formula (l), are obtained from the Green’s function and

(4) by substituting (X2+ c’ ) for X2.

One final comment needs to be made. At first inspection, the

singularity at n = O in the Poisson summation formulas of the

two- and three-dimensional Green’s functions of the Laplace

equation, i.e., formulas 3) and 4) in Table 1, seem to cause

trouble. In practice, the series Green’s function can always be

written as the difference of two functions, both of which having

the functional form of ~( n ) in either formula 3) or 4) of Table I.

With the Green’s function written in this form, the n = O term of

the Poisson summation formula equals zero, removing the singu-

larity y and obviating the problem.

III. CONCLUSION

The application of the series acceleration technique defined by

(1) permits efficient computation of wide classes of problems

which involve periodic sources. Many of these problems require

integral transforms in the form of Poisson summation formulas

which are not readily available. This paper presents a complete,

convenient catalog of these Poisson summation formulas for

Green’s functions of the Hehnholtz and Laplace equations which

represent periodic sources in rectangular coordinates and homo-

geneous media.
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Constant-Frequency Synthesis of Lossy Microwave

Two-Ports

LODEWLIK R. G. VERSFELD

Abstract —At a freed frequency, every linear time-invariant two-port can

be described by its scattering matrix, whose elements represent eight real

parameters. In this paper, it is proved that every Iossy (linear, time-

invariant) two-port can be canonically synthesized by eight “elementary”

two-ports, which are characterized by one parameter only. Moreover, these

elementary two-ports are passive and realizable in the microwave region.

The synthesis is performed in the form of a cascade structure (with one
(Cside am~> for the nonreciprocal case). Explicit formulas for the parame-

ters of the elementary two-ports are derived.

I. INTRODUCTION

This paper gives a “satisfactory” synthesis of linear, time-

invariant, lossy microwave two-ports at a fixed frequency. It

herewith solves part of the general problem of constant-frequency

synthesis of microwave networks [1]. By” satisfactory” we mean a
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TABLE I

ELEMENTARYBUILDING BLOCKS

[
NAME 5YMBOL SCATTERING MATRIX

“’EN”AT”= ‘A=[:d ‘;”

‘RA’’’MERER= ‘“=[::1‘:’;=’

I PASSIVE
ONE-PORT Iml

P p , ,plQJ* ~’~~
1PM

I

synthesis using a minimum number of elementary two-ports

belonging to the same class as the required two-port (in this case,

the linear, time-invariant, passive class). We call a two-port

elementary if it has one adjustable parameter and a simple

description in terms of the scattering formalism on a power basis

[2].

Here we need three types of elementary two-ports, given in

Table I. They all can be considered as idealizations of realizable

microwave two-ports. Furthermore, we need the three-port circu-

lator (see Table I) for the realization of nonreciprocal two-ports.

We shall show how a lossy two-port, characterized by eight real

parameters, can be synthesized with eight elementzuy two-ports, a,

circulator, and a short circuit.

With “ Iossy” we mean that the two-port dissipates power for

all (sinusoidal) forms of excitation. Therefore, in the passivity

conditions [3], only the inequality signs appearl

1– ISIJ* – @2J* >0

1

1–1s2212 –IS1212>0 .

(1- ISIJ’-IS211*)(1- Is**l’ - 1s121’)- 1s,1s,2 + S2,S221’ >0

(1)

We also introduce the concept of a passive one-port, char-

acterized by its complex reflection coefficient p (see Table I), not

for the synthesis itself, but only in order to formulate some

theorems.

II. SOME AUXILIARY THEOREMS

Theorem 1

Every passive reflection coefficient p.= Ipo leJ$O cart be real-

ized by the circuit of Fig. 1, taking B = – ~$o and r = Ipo 1.

‘TM can be seen by noticing that PO is the coefficient Sll of

the cascade of B and N, which can be calculated easily.

Theorem 2

If and only if a lossless two-port is loaded on port 2 with ~22

(i.e., the complex conjugate of its coefficient S22), the reflection

coefficient seen on port 1 equals zero.

1A bar above a symbol is used to denote the complex conjugate.

Fig. 1. Synthesis of a passive reflection coefficient.

““-?#GEElsl
Fig. 2. Lossless two-port, loaded with ~z.

@Y---@g ~+z
Fig. 3. Definition of conjugate image reflection coefficients.

This can be seen by computing p in the situation of Fig. 2 and

using the properties of the S-matrix of a lossless two-port [4].

Likewise, loading port 1 with &, yields p = O on port 2.

Theorem 3

For every lossy two-port T, passive reflection coefficients PI

and P2 cart be found such that the situations of Fig. 3 hold.

This is the concept of conjugate image impedances [5]-[’)]

translated into the scattering formalism. The straightforward

calculation of PI and p.’ yields

P,=++,+@-=i@) (2a)
1

where (with det S = SIIS22 – S12S21)

D1 =1+ ISI112 – 1S2212– ldetS12

El= S1l–~det S

D2 =1+ IS2212– ISI112 – ldetS12

E2 = S22 – S1l det S.

These formulas cam be obtained also [8], [9] by changing the

normalization impedances of a given S-matrix such that in the

new S-matrix Sll = S22 = O holds, i.e., both ports are simulta-

neously conjugate matched. It can be proved by rather com-

plicated algebraic manipulations that (2a) and (2b) have the

following properties:

a) D: –41E112 =D~ –41E212.

b) The modulus of the product of the two solutions for p,

equals unity. The same holds for p2.

c) D? – 41El ~’ is positive for Iossy two-ports.

Properties b) and c) together imply the existence of one passive

(and one active) solution for PI. Because of property a), the same

holds for p2. Moreover, it can be proved that D1 and D2 are

positive for 10SSYtwo-ports. This implies that in (2a) and (2b), the

passive solutions are obtained by taking the minus signs.

Theorem 4

In the cascade of Fig. 4, with Tan arbitrary lossy two-port, the

two-ports Nl, B1, B2, N2 can be chosen such that for the resulting

two-port (i.e., between ports 1 and 4) Sll = S22 = O.

Proof Let PI and p2 denote the reflection coefficients

belonging to T, as meant in Theorem 3.

According to Theorem 1, B2 and N, can be chosen such that

loading port 4 with p = O, the reflec{on coefficient on port 3,
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Fig. 4. Transformation of a two-port into one having zero input reflection

coefficients.
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Fig. 5. Transforrnationof atwo-port mtouneqmvalent one.

Fig. 6. Synthesis ofalossy two-port using ei&telementay two-ports

seen to the right, equals Pz. Likewise, BI and N1 me t~en such

that loading port 1 with p = O yields p = PI on port 2 (seen to the

left).

Now, loading port 4 with p = O (and looking to the right all the

time), we see on port 3: p = PI; on port 2: p =fi (Theorem 3!);

on port 1: p = O (Theorem 2!). On the other hand, we see on port

1, by definition, the reflection coefficient Sll of the resulting

two-port. So, Sll = O. Using the same reasoning from left to right

yields the result S22 = O.

III. THE SYNTHESIS OF LossY TWO-PORTS

In the cascade connection of Fig, 5, T is the two-port to be

synthesized. Furthermore, let the following relations exist:

B,=– B~ r,=–r~, i=l,2. (3)

B,, B;, r,, q’ in this expression are the scattering parameters

(according to Table 1) of two-ports B,, B;, ~, ~’, respectively.

From (3), it is clear that there is a through-connection between

ports 1 and 3 as well as between ports 4 and 6. Therefore, the

resulting two-port is identical to two-port T. The synthesis will

relate to this resulting two-port. Using Theorem 4, we choose
N:, B~, B;, N; such that ,./l = S~2 = O for two-port T’ in Fig. 5.

so

[1

o s~2
Sr =

S;l o

This two-port T’ can be realized by a cascade of an attenuator, a

phaseshifter, and a circulator, the latter being loaded on its third

port with the short-circuited cascade of an attenuator and a phase

shifter. Applying this to the cascade of Fig. 5 yields the finaJ

result given in Fig. 6.

Here we see how a lossy two-port, given by eight real parame-

ters, is synthesized with a circuit of eight elementary two-ports,

having together eight real parameters as well

The last step is to express the latter parameters into the former

ones. Combining (3) with Theorems 1 and 4 yields

.BI = * arg PI

rl=lpll

1

(4)
Bz = ~ arg P2

t-~=– lp21

PI and PZ being given b (2a) ad (2b), respectively.
Referring to Fig. 5, matrix ST can be calculated from the

cascade of N{, B~, T, B; ,’IV~. In addition, using (3) and (4), we

find

(5)

Since Slz /&l does not change if reciprocal two-ports are put in

cascade with a given two-port, we get

s
S;l= $ S[2.

12

(6)

The parameters of the remaining two-ports of Fig. 6 can be

expressed easily in S{2 and S~l as follows.

a)

b)

(7)

the circulator has to be used with port 1 on the left-hand

side and port 2 on the right-hand side (see Table I).

If ls:l] > ]sj2\:
Formulas (7) with S(2 and S& interchanged; the circulator

now has to be used with ports 1 and 2 interchanged.

Notice that in the reciprocal case, due to the vzdues e“ A = 1 and

B = – +T, the circulator turns into a through-connection.

IV. CONCLUSION

At a fixed frequency, every linear, time-invariant lossy two-port

can be canonically synthesized by the structure of Fig. 6.

Whether or not this realization is unique is an open question.

Other possible structures are

the “cascade with side arm.” not having the same number

and order of attenuators, phase shifters, and ideal trans-

formers as the structure OF Fig. 6.

combinations of cascade, series, and parallel structures.
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